红外光谱法快速预测不同种类重楼中重楼皂苷含量Rapid prediction of the content of polyphyllin in various species of Paris by infrared spectrometry
吴喆;张霁;张金渝;徐福荣;王元忠;
WU Zhe;ZHANG Ji;ZHANG Jin-yu;XU Fu-rong;WANG Yuan-zhong;College of Traditional Chinese Medicine,Yunnan University of Traditional Chinese Medicine;Institute of Medicinal Plants,Yunnan Academy of Agricultural Sciences;
摘要(Abstract):
重楼皂苷是中药重楼主要的有效成分,为了快速评价重楼品质,保证重楼在临床治疗中的疗效,本文采用红外光谱结合偏最小二乘回归法(partial least squares regression,PLSR)对重楼中重楼皂苷Ⅰ、重楼皂苷Ⅱ和重楼皂苷Ⅶ进行定量分析,建立快速评价重楼品质的方法。采集78份不同产区、不同种类重楼样品的红外光谱,用高效液相色谱测定重楼样品中重楼皂苷Ⅰ、重楼皂苷Ⅱ及重楼皂苷Ⅶ的含量,将重楼的红外光谱数据和液相数据进行拟合,快速预测3种重楼皂苷含量。原始红外光谱经多元散射校正(multiplicative signal correction,MSC)、标准正态变量(standard normal variate,SNV)、正交信号校正(orthogonal signal correction,OSC)、一阶求导(first derivative,1st Der)、二阶求导(second derivative,2nd Der)预处理后,运用偏最小二乘回归分析建立重楼皂苷的定量预测模型。重楼皂苷Ⅰ和重楼皂苷Ⅱ的最佳预处理方法为MSC+OSC+2nd Der,重楼皂苷Ⅶ的最佳预处理方法为MSC+SNV+OSC+2nd Der;重楼皂苷Ⅰ、重楼皂苷Ⅱ和重楼皂苷Ⅶ3个指标成分定量校正模型的决定系数(R~2)分别为0.930 8,0.934 8,0.912 3 mg·g~(-1);校正均方根误差(root mean square error of estimation,RMSEE)分别为1.855 0,0.632 3,0.001 6 mg·g~(-1);验证模型的决定系数(R~2)分别为0.948 8,0.963 6,0.780 1 mg·g~(-1);预测均方根误差(root mean square error of prediction,RMSEP)分别为1.704 6,1.227 7,0.001 9 mg·g~(-1);定量模型的预测值与真实值比较接近,模型预测效果好,其中重楼皂苷Ⅰ,Ⅱ定量模型效果优于重楼皂苷Ⅶ。该方法无损、快速、准确,可用于重楼中重楼皂苷含量的快速测定。
Polyphyllin is the main active constituent in Paris which was a traditional Chinese medicine. In order to evaluate the quality of Paris rapidly and ensure the efficacy in clinical therapy,we quantified the contents of polyphyllin Ⅰ,polyphyllin Ⅱ and polyphyllin Ⅶ using infrared spectroscopy with partial least squares regression( PLSR). The method for evaluating the quality of Paris was established. Infrared spectra of 78 samples from various species in different origins were collected. The contents of polyphyllin Ⅰ,Ⅱ and Ⅶ were determined by high performance liquid chromatography( HPLC). The HPLC data were combined with the spectral data to predict the contents of three polyphyllin rapidly. Multiplicative signal correction( MSC),standard normal variate( SNV),orthogonal signal correction( OSC),first derivative and second derivative were utilized for the spectral preprocessing. Then,the optimized spectral data were used to establish the quantitative prediction model based on PLSR. The results showed that the best spectral pretreatment of polyphyllin Ⅰ and Ⅱ were MSC + OSC + 2nd Der and that of polyphyllin Ⅶ was MSC + SNV + OSC + 2nd Der. In the quantitative calibration model,the determination coefficients( R~2) of polyphyllin Ⅰ,polyphyllin Ⅱ and polyphyllin Ⅶ were 0. 930 8,0. 934 8 and0. 912 3,respectively while the Root mean square error of estimation( RMSEE) were 1. 855 0,0. 632 3 and 0. 001 6 mg·g~(-1),respectively. In the verification model,the R~2 of polyphyllin Ⅰ,polyphyllin Ⅱ and polyphyllin Ⅶ were 0. 948 8,0. 703 6 and 0. 801 7,respectively,and the root mean square error of prediction( RMSEP) were 1. 704 6,1. 227 8 and 0. 002 0 mg·g~(-1),respectively. Because of the predictive value of quantitative model was closed to the real value,the effect of the model was good. The model of polyphyllin Ⅰ and Ⅱ were better than that of polyphyllin Ⅶ. The developed method was non-destructive,fast,and accurate. It was feasible to determine the content of polyphyllin in Paris.
关键词(KeyWords):
重楼;红外光谱;定量分析;重楼皂苷;偏最小二乘回归
Paris;infrared spectroscopy;quantitative analysis;polyphyllin;partial least squares regression
基金项目(Foundation): 国家自然科学基金项目(81460584);; 农业部公益性行业科研专项(201303117)
作者(Author):
吴喆;张霁;张金渝;徐福荣;王元忠;
WU Zhe;ZHANG Ji;ZHANG Jin-yu;XU Fu-rong;WANG Yuan-zhong;College of Traditional Chinese Medicine,Yunnan University of Traditional Chinese Medicine;Institute of Medicinal Plants,Yunnan Academy of Agricultural Sciences;
Email:
DOI: 10.19540/j.cnki.cjcmm.20170728.009
参考文献(References):
- [1]张铁军.中药质量认识与质量评价[J].中草药,2011,42(1):1.
- [2]张海珠,肖小河,王伽伯,等.中药质量评控的第一要义:效应当量一致性[J].中草药,2015,46(11):1571.
- [3]王耀鹏,顾志荣,孙宇靖,等.近红外光谱快速定量技术在中药分析中的最新应用进展[J].中国实验方剂学杂志,2015,21(9):223.
- [4]Zhong J,Qin X.Rapid quantitative analysis of corn starch adulteration in Konjac Glucomannan by chemometrics-assisted FT-NIR spectroscopy[J].Food Anal Method,2016,9(1):61.
- [5]Musingarabwi D M,Nieuwoudt H H,Young P R,et al.A rapid qualitative and quantitative evaluation of grape berries at various stages of development using Fourier-transform infrared spectroscopy and multivariate data analysis[J].Food Chem,2016,190:253.
- [6]Zhang S,Zhang H,Zhao Y,et al.A simple identification model for subtle bruises on the fresh jujube based on NIR spectroscopy[J].Math Comput Model,2013,58(3):545.
- [7]Godinho M S,Blanco M R,Neto F F G,et al.Evaluation of transformer insulating oil quality using NIR,fluorescence,and NMR spectroscopic data fusion[J].Talanta,2014,129:143.
- [8]Rácz A,Vass A,Héberger K,et al.Quantitative determination of coenzyme Q10 from dietary supplements by FT-NIR spectroscopy and statistical analysis[J].Anal Bioanal Chem,2015,407(10):2887.
- [9]Afara I O,Singh S,Oloyede A.Load-unloading response of intact and artificially degraded articular cartilage correlated with near infrared(NIR)absorption spectra[J].J Mech Behav Biomed,2013,20:249.
- [10]Xu X F,Nie L X,Pan L L,et al.Quantitative analysis of Panax ginseng by FT-NIR spectroscopy[J].J Anal Methods Chem,2014,doi:10.1155/2014/741571.
- [11]Shao Q S,Zhang A,Ye W W,et al.Fast determination of two atractylenolides in Rhizoma Atractylodis macrocephalae by Fourier transform near-infrared spectroscopy with partial least squares[J].Spectrochim Acta A,2014,120:499.
- [12]雷敬卫,樊明月,白雁,等.基于近红外光谱法的枳实含量测定[J].天然产物研究与开发,2015,27(7):1199.
- [13]Zhang J Y,Wang Y Z,Zhao Y L,et al.Chemical assessment of wild Paris rhizome from southwest China[J].Afr J Pharm Pharmaco,2012,6(40):2802.
- [14]中国药典.一部[S].2015:260.
- [15]Jandri8 Z,Haughey S A,Frew R D,et al.Discrimination of honey of different floral origins by a combination of various chemical parameters[J].Food Chem,2015,189:52.
- [16]Sarragu9a M C,Lopes J A.Quality control of pharmaceuticals with NIR:from lab to process line[J].Vib Spectrosc,2009,49(2):204.
- [17]吴志生,史新元,徐冰,等.中药质量实时检测:NIR定量模型的评价参数进展[J].中国中药杂志,2015,40(14):2774.
- [18]Xie L,Ye X,Liu D,et al.Quantification of glucose,fructose and sucrose in bayberry juice by NIR and PLS[J].Food Chem,2009,114(3):1135.
- [19]李清玉,司民真,饶高雄,等.云南不同产地灯盏细辛总黄酮含量测定与红外光谱相关分析[J].光散射学报,2009,21(1):73.
- [20]Chen J,Sun S,Ma F,et al.Vibrational microspectroscopic identification of powdered traditional medicines:chemical micromorphology of Poria observed by infrared and Raman microspectroscopy[J].Spectrochim Acta A,2014,128:629.
- [21]Zhang Y,Dong Y,Xiang B,et al.Feasibility research on rapid detection of prochloraz in green tea soft drink by near-infrared spectroscopy[J].Food Anal Method,2015,8(2):343.
- [22]Olinger J M,Griffiths P R.Effects of sample dilution and particle size/morphology on diffuse reflection spectra of carbohydrate systems in the near-and mid-infrared.Part I:single analytes[J].JAppl Spectrosc,1993,47(6):687.
- [23]Maleki M R,Mouazen A M,Ramon H,et al.Multiplicative scatter correction during on-line measurement with near infrared spectroscopy[J].Biosyst Eng,2007,96(3):427.
- [24]Rinnan,van den Berg F,Engelsen S B.Review of the most common pre-processing techniques for near-infrared spectra[J].Trac-Trend Anal Chem,2009,28(10):1201.
- [25]Wold S,Antti H,Lindgren F,et al.Orthogonal signal correction of near-infrared spectra[J].Chemometr Intell Lab,1998,44(1):175.
- [26]宋海燕,秦刚,韩小平,等.基于近红外光谱和正交信号-偏最小二乘法对土壤的分类[J].农业工程学报,2012,28(7):168.
- [27]Guo Q,Wu W,Massart D L.The robust normal variate transform for pattern recognition with near-infrared data[J].Anal Chim Acta,1999,382(1):87.
- [28]Zhao Y L,Zhang J,Jin H,et al.Discrimination of Gentiana rigescens from different origins by Fourier transform infrared spectroscopy combined with chemometric methods[J].J AOAC Int,2015,98(1):22.
- [29]Pande R,Mishra H N.Fourier transform near-infrared spectroscopy for rapid and simple determination of phytic acid content in green gram seeds(Vigna radiata)[J].Food Chem,2015,172:880.
- [30]Barboza F D,Poppi R J.Determination of alcohol content in beverages using short-wave near-infrared spectroscopy and temperature correction by transfer calibration procedures[J].Anal Bioanaly Chem,2003,377(4):695.
- [31]Wold S,Sj9str9m M,Eriksson L.PLS-regression:a basic tool of chemometrics[J].Chemometr Intell Lab,2001,58(2):109.
- [32]Musingarabwi D M,Nieuwoudt H H,Young P R,et al.A rapid qualitative and quantitative evaluation of grape berries at various stages of development using Fourier-transform infrared spectroscopy and multivariate data analysis[J].Food Chem,2016,190:253.
- [33]李莉,王庆振,孙颖平.近红外漫反射光纤光谱结合偏最小二乘法快速测定黑果小檗皮中盐酸小檗碱含量[J].中国现代应用药学,2015,32(2):168.
- [34]Borràs E,FerréJ,BoquéR,et al.Data fusion methodologies for food and beverage authentication and quality assessment-a review[J].Anal Chim Acta,2015,891:1.
- [35]汪静静,闫述模,杨滨.近红外光谱技术对人参药材人参皂苷含量测定及产地识别的研究[J].光谱学与光谱分析,2015,35(7):1885.
- 重楼
- 红外光谱
- 定量分析
- 重楼皂苷
- 偏最小二乘回归
Paris - infrared spectroscopy
- quantitative analysis
- polyphyllin
- partial least squares regression
- 吴喆
- 张霁
- 张金渝
- 徐福荣
- 王元忠
WU Zhe- ZHANG Ji
- ZHANG Jin-yu
- XU Fu-rong
- WANG Yuan-zhong
- College of Traditional Chinese Medicine
- Yunnan University of Traditional Chinese Medicine
- Institute of Medicinal Plants
- Yunnan Academy of Agricultural Sciences
- 吴喆
- 张霁
- 张金渝
- 徐福荣
- 王元忠
WU Zhe- ZHANG Ji
- ZHANG Jin-yu
- XU Fu-rong
- WANG Yuan-zhong
- College of Traditional Chinese Medicine
- Yunnan University of Traditional Chinese Medicine
- Institute of Medicinal Plants
- Yunnan Academy of Agricultural Sciences