不同剂型夏桑菊颗粒HPLC指纹图谱及其模式识别分析Analysis of different dosage forms of Xiasangju granules on fingerprints and models using high performance liquid chromatography
夏伯候;严东;曹艺;周亚敏;李亚梅;谢嘉驰;柏玉冰;廖端芳;林丽美;
XIA Bo-hou;YAN Dong;CAO Yi;ZHOU Ya-min;LI Ya-mei;XIE Jia-chi;BAI Yu-bing;LIAO Duan-fang;LIN Li-mei;College of Pharmacy,Hunan University of Chinese Medicine;Hunan Research Center of Engineering Technology for Rapid Test and Removal of Toxic and Harmful Substances in Chinese Medicine,Hunan University of Chinese Medicine;Hunan Engineering Laboratory for Prevention and Control Technology of Toxic Substances in Chinese Medicine,Hunan University of Chinese Medicine;
摘要(Abstract):
建立夏桑菊有糖和无糖颗粒的HPLC指纹图谱,为其鉴别与有效控制质量提供参考。采用高效液相法采集20批无糖型和34批有糖型夏桑菊颗粒指纹图谱,通过模式识别方法(主成分分析,正交最小二乘法判别分析)分类并筛选其主要差异组分;通过对照品对照的方法鉴定其主要的组分。成功建立夏桑菊有糖和无糖颗粒指纹图谱;主成分分析不能完全分类2种颗粒,而正交最小二乘法判别分析可明显的分为2类;2种颗粒之间差异最大的组分主要有6个,其中3个分别为异迷迭香酸苷、木犀草苷和蒙花苷。该研究建立的模式识别方法有助于夏桑菊颗粒整体质量控制,同时为其质量评价提供一种有效手段。
To establish the fingerprints of Xiasangju granules( with sugar and non-sugar forms) by HPLC,and provide reference for their identification and effective quality control. High performance liquid chromatography( HPLC) method was used to collect the fingerprints of 20 batches of non-sugar Xiasangju granules and 34 batches of sugar type Xiasangju granules. Their main different components were classified and screened by mode identification methods( principal component analysis,PCA,and orthogonal partial least squares discriminate analysis,OPLS-DA). The principal components were identified by comparing with reference standards. The fingerprints of Xiasangju granules( sugar type and non-sugar type) were established. PCA could not fully classify the two types of granules,while OPLS-DA could obviously classify these two different types of Xiasangju granules. Six components showed greatest difference between two types of granules,including salviaflaside,luteoloside and linarin. The developed mode identification method is helpful to control the overall quality of Xiasangju granules,and it provides an effective approach to quality evaluation.
关键词(KeyWords):
HPLC指纹图谱;模式识别;夏桑菊颗粒;主成分分析;正交最小二乘法判别分析
HPLC fingerprint;mode identification;Xiasangju granules;principal component analysis;orthogonal partial least squares discriminate analysis
基金项目(Foundation): 国家“重大新药创制”科技重大专项(2013ZX09201019);; 教育部高等学校博士学科点专项科研基金项目(20124323120004);; 湖南省自然科学基金项目(13JJ4089);; 湖湘青年科技创新创业平台项目(2013);; 湖南省十二五重点学科药学学科项目;; 湖南省博士后科研专项(2014RS4009)
作者(Author):
夏伯候;严东;曹艺;周亚敏;李亚梅;谢嘉驰;柏玉冰;廖端芳;林丽美;
XIA Bo-hou;YAN Dong;CAO Yi;ZHOU Ya-min;LI Ya-mei;XIE Jia-chi;BAI Yu-bing;LIAO Duan-fang;LIN Li-mei;College of Pharmacy,Hunan University of Chinese Medicine;Hunan Research Center of Engineering Technology for Rapid Test and Removal of Toxic and Harmful Substances in Chinese Medicine,Hunan University of Chinese Medicine;Hunan Engineering Laboratory for Prevention and Control Technology of Toxic Substances in Chinese Medicine,Hunan University of Chinese Medicine;
Email:
DOI:
参考文献(References):
- [1]中国药典.一部[S].2010:263.
- [2]林丽美,夏伯候,刘菊妍,等.RP-HPLC法同时测定夏桑菊颗粒中绿原酸、异迷迭香酸苷、迷迭香酸和蒙花苷[J].中成药,2013,35(11):2411.
- [3]花汝凤,姚江雄,黎志坚,等.HPLC同时测定夏桑菊颗粒中迷迭香酸与异迷迭香酸苷的含量[J].中国实验方剂学杂志,2013,19(24):75.
- [4]黄淑彰.HPLC法测定夏桑菊颗粒中熊果酸的含量[J].现代中药研究与实践,2004(3):33.
- [5]彭丽英,彭攸灵,杨先国.RP-HPLC测定夏桑菊颗粒中迷迭香酸的含量[J].中国当代医药,2014,21(20):8.
- [6]Peng Q,Tian R,Chen F,et al.Discrimination of producing area of Chinese Tongshan kaoliang spirit using electronic nose sensing characteristics combined with the chemometrics methods[J].Food Chem,2015,178:301.
- [7]Guo L,Duan L,Liu K,et al.Chemical comparison of Tripterygium wilfordii and Tripterygium hypoglaucum based on quantitative analysis and chemometrics methods[J].J Pharmaceut Biomed Anal,2014,95:220.
- [8]Bevilacqua M,Marini F.Local classification:locally weightedpartial least squares-discriminant analysis(LW-PLS-DA)[J].Anal Chim Acta,2014,838:20.
- [9]王璠,欧阳臻,郭兰萍,等.苍术综合化学模式识别[J].中国中药杂志,2014,39(13):2536.
- [10]沈莉,赵燕燕,谢洪平,等.升麻的1H-NMR指纹图谱-模式识别研究[J].中国中药杂志,2013,38(2):217.
- [11]Fukunaga K.Introduction to statistical pattern recognition[M].New York:Academic press,2013.
- [12]Kurubanjerdjit N,Chen C Y,Tzeng K R,et al.In-silico study of the role of differentially expressed genes and microRNAs in host-pathogen interaction[C].Hongkong:Proceedings of the International Multi Conference of Engineers and Computer Scientists,2014.
- [13]Bro R,Smilde A K.Principal component analysis[J].Anal Method,2014,6(9):2812.
- [14]Robins J.Partial-least squares[J].Long Range Plann,2012,45(5):309.
- [15]De Lucia F C,Gottfried J L.Influence of variable selection on partial least squares discriminant analysis models for explosive residue classification[J].Spectrochim Acta Pt B-At Spec,2011,66(2):122.
- [16]Boccard J,Rutledge D N.A consensus orthogonal partial least squares discriminant analysis(OPLS-DA)strategy for multiblock Omics data fusion[J].Anal Chim Acta,2013,769:30.
- HPLC指纹图谱
- 模式识别
- 夏桑菊颗粒
- 主成分分析
- 正交最小二乘法判别分析
HPLC fingerprint - mode identification
- Xiasangju granules
- principal component analysis
- orthogonal partial least squares discriminate analysis
- 夏伯候
- 严东
- 曹艺
- 周亚敏
- 李亚梅
- 谢嘉驰
- 柏玉冰
- 廖端芳
- 林丽美
XIA Bo-hou- YAN Dong
- CAO Yi
- ZHOU Ya-min
- LI Ya-mei
- XIE Jia-chi
- BAI Yu-bing
- LIAO Duan-fang
- LIN Li-mei
- College of Pharmacy
- Hunan University of Chinese Medicine
- Hunan Research Center of Engineering Technology for Rapid Test and Removal of Toxic and Harmful Substances in Chinese Medicine
- Hunan University of Chinese Medicine
- Hunan Engineering Laboratory for Prevention and Control Technology of Toxic Substances in Chinese Medicine
- Hunan University of Chinese Medicine
- 夏伯候
- 严东
- 曹艺
- 周亚敏
- 李亚梅
- 谢嘉驰
- 柏玉冰
- 廖端芳
- 林丽美
XIA Bo-hou- YAN Dong
- CAO Yi
- ZHOU Ya-min
- LI Ya-mei
- XIE Jia-chi
- BAI Yu-bing
- LIAO Duan-fang
- LIN Li-mei
- College of Pharmacy
- Hunan University of Chinese Medicine
- Hunan Research Center of Engineering Technology for Rapid Test and Removal of Toxic and Harmful Substances in Chinese Medicine
- Hunan University of Chinese Medicine
- Hunan Engineering Laboratory for Prevention and Control Technology of Toxic Substances in Chinese Medicine
- Hunan University of Chinese Medicine